


Key observation:

path integral Z(B"*!) < local projections < local relations (skein-type relations)

» e C(X) = fields on X
* e Path integral:

Z(M™e) € f T(z)

rEC(M;ec)

Topologically invariant. ¢ € C(OM) is a boundary condition.
Z(M):C(oM) - C

from C(OM) to C

/

Z(M) : F(alnM) — F(aﬂutM)

with corners: Z(M). : F(OnM;c) — F(OoueM;c) for all ¢c € C(00,) =
C(00out)

= .
» o Z(M) e F(OM), where F(OM) is some appropriate space of functions
» .
» *




in particular, Ty = Z(Y"xI).: F(Y;c) — F(Y;c)
Ty is a projection: (Y x I)U (Y x I) =Y x I implies

My OMy = My

MU (OM x I) = M implies

?TaM(Z(M)) - Z(M)

Z(M) € im(map) C F(OM)

so the Hilbert space for the theory is Z(Y) & im(ry) C F(Y)




Z(Y) has a local structure:
»- forany B C Y, B = B", we have

F(Y) = GB F(B;c) @ F(Y \ B;c)

ccC(OB)

== ¢ define 75 : F(Y) — F(Y) by

def '
Uy: = @ T(B:c) & id
ccC(aB)

»- (Y xI)U(BxI) =Y xIimplies mgomy = my implies Z(Y) C im(7p),
forall BCY

»- let {B;} be an open cover of Y; then Y x I = By x IU---UB x [
implies 7y = 7, 0 --- o mwp, implies Z(Y) = im(wpg,) N---Nim(rp,)

» e it follows that




It is usually more convenient to work with dual spaces.

=l o A(Y)E Z(Y)" = C[C(Y)]/U(Y), where

U(Y) = {aeClC(Y)]| f(a) =0for all f e Z(Y))

) e define LR(Y'), the space of local relations on C[C(Y)], to be the span
ofall uer, where BCY, B=B" ucU(B),rcC(Y\B),anduer
denotes the gluing of u and r

» e then the locality result for Z(Y') implies that

A(Y) = C[C(Y)]/LR(Y);

in other words, the dual of the Hilbert space is a generalized skein
module




Now for the rigorous definitions:

A system of fields for manifolds of dimension < n consists of:

e a collection of functors Ci : My — Set, k < n, where M, denotes the
category of k-manifolds and homeomorphisms (PL, say)

e additional data [...] (see below)
e satisfying conditions [...] (see below)
Main examples:
e C(X)={maps X — C}, e.g. C = BT, where I is a finite group

e C(X) = {decorated cell complexes C X}

L]
£
C?




The rest of the “fields” definition:

e restriction maps C(X) — C(0X) (natural transformation of functors)

e orientation reversal maps C(X) — C(—X) (natural transformation of
functors)

e compatibility with monoidal structure C(X LU W) = C(X) x C(W)

e gluing along Y C 0X, —Y C OW corresponds to a fibered product

/\

C(X Uy W)

\/

(and similarly for self-gluing, gluing with corners) (up to isotopy sup-
ported near Y)

e “product with I” maps C(Y) — C(Y x I); fiber-preserving homeos of
Y x I act trivially on image




Definition of “local relations”:

For each n-manifold B 2 B" and ¢ € C(0B), asubspace U(B;c) C C[C(B;c)],
preserved under homeomorphisms, such that

e local relations are at least as strong as isotopy: for all a,b € C(B)
with a isotopic to b (pseudo-isotopic or extended isotopic), we have

a—beU(B).

e local relations are an ideal with respect to gluing: for all B = B; U B,
uwe U(B,), r € C(B:), we have uer € U(B)




Basic constructions, dimension n

A(Y™;¢) £ ClC(Y)]/LR(Y)

where ¢ € C(0Y') is a boundary condition and LR(Y') is the span of all uer,
BCY,ueU(B), reC(Y\B)




Basic constructions, dimension n-1

A(Wn1Le) is a *-1-categﬂry:_/_—> Q
e objects: C(W;c)
e morphisms from a to b: A(W x I;a,b) =y

e composition: gluing —ﬁ




Basic constructions, dimension n-2

A(Q" % ¢) is a pivotal 2-category:
e (-morphisms: C(Q;¢)
e l-morphisms from a to b: C(Q x I;a,b)
e 2-morphisms from e to f: A((Q x I) x I;e, f)

e composition: gluing

And so on: A(X™ %) is a linear k-category with strong duality. For j < k,
the j-morphisms are C(X x I7;.). The k-morphisms are A(X x I*;.).




Manifolds afford representations of their boundary categories

{A(W™ ¥, ¢)}, where ¢ runs through all of C(0W), affords a representation
of the k+1-category A(OW), via gluing of collars.

More generally, let Z C OW be a codimension-0 submanifold, and
be C(OW \ Z). Then {A(W™ %;b,¢)}, where ¢ runs through all of C(Z, db),
affords a representation of the k+1-category A(Z;0b), via gluing of partial
collars.




Let X_,. be an n—k-manifold, with Z U —Z embedded as a codim-0 subman-
ifold of 0.X... Identifying the copies of Z yields a manifold X,.

Theorem:

AXgibg) = () {A(Xews b, )}

(Z;0b)

(k times categorified coend)

(Drinfeld double is a special case of the once categorified coend. Drinfeld
center is a special case of the once categorified end.)

iz




What about Z?

o Z(Y") ¥ AY)* = {f:ClC(Y)] — C | f(uer) = 0 for all B,u,r as above}

o Z(Wn 1) o Rep(A(W)) (i.e. functors from A(W) to Vect)

e and in general, Z(X™ %) & Rep(A(X))

e for dim X < n, we have Z(X) € Z(0X)




What about dimension n+17?

What we want tfrom a path integral:
e For all M™ Z(M) € Z(OM), i.e.
Z(M): A(OM) — C

e satistying the gluing formula
1

{Eia Et’}j

Z(Mg)(ca) = _ Z(M)(ei e e; 0 )

where e; runs through an orthogonal basis of A(Y;0c)

e and where the (non-degenerate) inner products of A(Y™;b) are related
to the path integral via

(z,y) =Z(Y xI)(zey)




Theorem. Suppose

1. there exists z € Z(S™) such that the induced inner product
A(B™;¢c) ® A(B";¢c) — C given by a @ b +— z(a e b) is positive defi-
nite for all ¢ € C(S™!); and

2. dim A(Y"; ¢) < oo for all n-manifolds ¥ and all ¢ € C(9Y).

Then there exists a unique path integral Z(M™*!) € Z(0M) (for all n+1-
manifolds M) satisfying the the above conditions and such that Z(B""!) = 2.




Sketch of proot:

e Choose a handle decomposition of M. Adding the handles one at a
time (lowest index first) determines Z(M) via the gluing formula. This
proves uniqueness.

To prove existence, must show that the computation of the previous
step does not change if we cancel a pair of handles. This follows tfrom
the more general fact (lemma) that the gluing formula is associative.
So we can add the canceling pair of handles in reverse order, but this
is equivalent to adding partial collars, and hence has no effect on the
computation.




Examples...




Fields

Local Relation

State Sum

Maps into BG (G a finite group)
n = arbitrary

Homotopy of maps

Dijkgraaf-Witten sum on a triangulation

Pictures based on a pivotal 2-category
n=2

Isotopy plus relations coming from the
category

Turaev-Viro sum

Pictures based on a ribbon category
(a disklike 3-category)
n=3

Isotopy plus relations coming from the
category

For a generic cell handle decomposition of a
4-manifold, the Crane-Yetter state sum

[same as above]

[same as above]

For 2-handles attached to the 4-ball, the
Witten-Reshetikhin-Turaev surgery formula

[same as above]

[same as above]

For a “special spine” of a 4-manifold, the
Turaev shadow state sum




Fields and relations from a modular ribbon category

e C(M?3) = {3-valent labeled ribbon graphs in M}

e local relations:




Inductively determine inner products for attachment regions of i-handles
S*~1 x B*"*. Start the induction with Z(B*) : A(S8%) — C,

Z(BY(z) = X - evga(x)

L@@, - BOD)= 2

i SN > T 5 A ,
?Z{gﬁBEJ('ﬁq—Q):{E(B)(O)<w> o s'{ = |y

. 0 el
._ e lilye = S = EZT
2 2(SNB)(d) = 52(6 )( ) 8(13 )(o) b 20/ e ¥
SOV B

77 E/SB,XT)(@I) E'(B )(p’) 2(55)(%) 5 ;g
@ <@,f d%{jv :_é__




If A=D1, then Z(S° x BY) = Z(B* x §%).

If, in addition,

then dim(A(S* x S?)) =1 and Z(S! x B?) = Z(B? x S?)

So Z(W*) depends only on the bordism class of W (i.e. only on its
signature)

This implies that dim(A(M?)) = 1 for any closed M.

The state sum corresponding to generic cell decomposition of W__.4 is
(more or less) the Crane-Yetter state sum.

(Things are looking boring and disappointing, but...)




Applying the gluing formula to W* = (0-handle U 2-handles, we get the
Witten-Reshetikhin-Turaev surgery formula for OW.

More generally, we find that

Zwrr(X) = Z(07'X)

for dim(X) = 3,2, 1.

The extra structure on X needed to choose X modulo 4-dimensional
bordism corresponds precisely to the extra structure needed to make
the older dehnitions of Zw pr well-defined.

Zwrr(pt) = Z(0 'pt) 77

But Z(pt) is easy to define: it’s the 3-category Rep(C'), where C is the
ribbon 3-category with which we started the construction.




Goal: Apply the machinery from the previous hour to

interesting new examples




Contact structures as a TQFT (n=3)

C(M?) = {contact structures on M}
C(Y*) = {germs of contact structures on Y x [—¢, |}
local relations: (1) isotopy, (2) overtwisted disk ~ 0.

A basis for A(M?,C) is the set of tight contact structures on M re-
stricting to ¢ on dM, modulo isotopy.




Khovanov homology as a TQFT (n=4)

Khovanov homology has the structure of a disk-like 4-category:
e (-morphisms: nothing in BY
e l-morphisms: nothing in B!
e 2-morphisms: points in B*
e 3-morphisms: tangles in B®
e 4-morphisms 77 — T : Kh(T}; ¢ T3) (a bigraded C[a] module)

Composition of 0, 1, 2, 3-morphisms is obvious, as is duality.
Composition and duality of 4-morphisms...

J/
/

o (@-®)-n 8




Operadish product on Kh:

Kh(L,)® --- ® Kh(L;) — Kh(L)

Invariant under isotopy.




Applying the above constructions, we get a 4+1-dimensional TQFT (minus
the 5-dimensionsal part). It assigns a bigraded C|a] module Ay, (W*; L) to
each 4-manifold W. Agn(B*; L) = Kh(L).

How to calculate?

For Kh(L) (a.k.a. Ak, (B*; L)), one makes extensive use of the exact triangle
(long exact sequence) )

§

N4

The quotient in the definition of Aky(W*; L) breaks the exactness. (The
contact TQFT has a similar exact triangle, which also breaks.)

One solution: replace ordinary tensor products (over 1-categories) with de-
rived tensor products. But then we would need to show that the answer did
not depend on how we cut W up into 4-balls.

We preter a solution which is manifestly well-defined and functorial...



Blob homology

n-manifold M

n-category C } — chain complex B. (M, C)

def

where B C M, we U(B), and r € C(M \ B)

Replace quotient with resolution:

B o) Lihues] [
([

L
fl

000 — [Bz(ﬁ’ﬂ(_)\g——) @ (W,()—ia B (M, C>

(B 4,r) 2 -




(Bl, Bﬁaul:uﬁnrj LA (B:a,ﬂ:—hﬂl . ’-'") — (Bl:uluuiﬂ ”‘)

B.(M,C) is defined to be finite linear combinations
of k-blob diagrams. A k-blob diagram consists of
k blobs (balls) By,...,Bx_; in M. Each pair B;
and B, is required to be either disjoint or nested.
Each innermost blob B; is equipped with a null field
u; € U. There is also a C-picture r on the comple-
ment of the innermost blobs. The boundary map
0 : By(M,C) — By_;(M,C) is defined to be the
alternating sum of forgetting the i-th blob.




¢ Relation with TQFTs and skein modules. Hy(B.(M,C)) is iso-
morphic to Ax(M), the dual Hilbert space of the n+1-dimensional
TQFT based on C.

e Relation with Hochschild homology. When C is a 1-category,
B.(S', C) is homotopy equivalent to the Hochschild complex Hoch, (C').

¢ Polynomial algebras (possibly truncated) as n categories. If
C' is a polynomial algebra viewed as an n-category, then B,(M™, C) is
homotopy equivalent to singular chains on a configuration space of M
(possibly mod a generalized diagonal).
(see below for details)




Functoriality. The blob complex is functorial with respect to diffeo-
morphisms. That is, fixing C', the association

..'.M —* B* (1”, C)

is a functor from m-manifolds and diffeomorphisms between them to
chain complexes and isomorphisms between them.

Contractibility for B™. The blob complex of the n-ball, B.(B",C),
is quasi-isomorphic to the l-step complex consisting of n-morphisms
of C. (The domain and range of the n-morphisms correspond to the
boundary conditions on B". Both are suppressed from the notation.)
Thus B,(B",C) can be thought of as a free resolution of C.

Disjoint union. There is a natural isomorphism

B.(M, U M,,C) = B,(M,,C) & B.(M,, C).

Gluing. Let M; and M, be n-manifolds, with ¥ a codimension-0
submanifold of dM; and —Y a codimension-0 submanifold of dM,.
Then there is a chain map

gl}r : B,,(;Ml) @ H*(LME) —* H=(LM1 Uy Mr;,;.).




¢ Evaluation map. There is an ‘evaluation’ chain map

evys - C.(Diff(M)) ® B.(M) — B.(M).

(Here C,(Diff(M)) is the singular chain complex of the space of diffeo-
morphisms of M, fixed on dM.)

Restricted to Cy(Diff(M)) this is just the action of diffeomorphisms
described above. Further, for any codimension-1 submanifold ¥ € M
dividing M into M; Uy M., the following diagram (using the gluing
maps described above) commutes.

C.(Diff (M) ® B.(M) - B.(M)
A
gljf'.iﬂ.ﬁglr gl,-

C.(Diff(M)) ® C.(Diff(M)) ® B.(M;) ® B.(M>) B.(M,) ® B.(M,)

ev ) Beviar,

In fact, up to homotopy the evaluation maps are uniquely characterized
by these two properties.




Lemma. Let f: P* x M — M be a k a k-parameter family of diffeomor-
phisms and {U;} be an open cover of M. Then f is homotopic in C}.(Diff (M))
to ) f;. where is each f; is supported on a union of at most & of the U;’s.
(This is, if f; : Q¥ x M — M, then f(g,z) = f(¢’,z) for all g, ¢’ unless z is
in the aforementioned union of U;’s.)




o A categories for n—1-manifolds. For Y an n—1-manifold, the
blob complex B.(Y x I,C) has the structure of an A, category. The
multiplication (ms) is given my stacking copies of the cylinder Y x [
together. The higher m;’s are obtained by applying the evaluation map
to i—2-dimensional families of diffeomorphisms in Diff (1) C Diff(Y' x I).
Furthermore, B.(M,C) affords a representation of the A, category
B.(0M x I,C).

Gluing formula. Let ¥ € M divide M into manifolds M; and M.
Let A(Y) be the A, category B.(Y x I,C). Then B,(M;,C) affords
a right representation of A(Y), B.(M,, C) affords a left representation
of A(Y'), and B.(M,C) is homotopy equivalent to B.(M;,C) ®4y)

B.(M,,C).

(More generally, can define an A, k-category for n—k-manifolds, and prove
a similar gluing theorem.)




There is a version of the blob complex for C' an A_ n-category. If C is
the A, n-category based on maps of B, B!,... B" — W, then B,(M,C) is
homotopy equivalent to C,({maps M — W'}).

In place of an exact triangle, Ak, (W*, L) has a collapsing spectral sequence.

The blob complex and configuration spaces:

C=Ct] = B.(M,C)~C.(5%(M))
C=C[t]/(t") =

B.(M,C) = C. (E"“*(
C=Cltr,...,tm] => B.(M,C) =
(M

Compatibly with the action of C,(Dift
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