1. Deletion-contraction relations

2. Hard hexagons in the shadow world (and beyond)

3. Most topological state sums are instances of a more general construction
Deletion-Contraction

\[G = \text{planar graph} \]
\[I(G) = \text{graph invariant} \]
\[I(G) \in \mathcal{C} \]

\[A \cdot I(\mathcal{X}) + B \cdot I(\mathcal{Y}) + C \cdot I(\mathcal{Z}) = 0 \]

\[A, B, C \in \mathcal{C}, \ A, B, C \neq 0 \]

Vertex+edge fugacities:
\[I'(G) = I(G) \cdot \alpha^{\#e(G)} \cdot \beta^{\#v(G)} \]
\[\rightarrow (A', B', C') = (A, \alpha B, \alpha \beta C) \]
In order to fully evaluate a graph, we further assume:

\[
- I(G_1 \cup G_2) = I(G_1) \cdot I(G_2)
- \phi = \lambda \cdot \phi
- * = \rho \cdot \phi
- \emptyset = \emptyset \cdot \phi
\]

Also,

\[
\frac{-B}{A} \cdot \phi - \frac{C}{A} = -\frac{B_\rho - C}{A}
\]

so for convenience, define

\[t = -\frac{B_\rho - C}{A}\]
Consider \(\{ \mathbf{N} =) + \frac{A}{C}) + \frac{B}{Ct} ; \)

\(\mathbf{N} \) is almost nilpotent.

\(\mathbf{N} = 0 \), \(\mathbf{N} = 0 \), but \(\mathbf{N} \neq 0 \)

So we impose further relation \(\mathbf{N} = 0 \Rightarrow \)

\(\mathbf{N} = L + \frac{A \lambda p}{C} + \frac{B p}{C} = 0 \)

(Can be thought of as a relation between \(L \) and \(\lambda \).)
Chromatic polynomial, \(\chi_k(G) = \# \text{ of vertex colorings with } k \text{ colors} \)

\[
\chi = \chi + \chi \implies A = 1, \quad B = -1, \quad C = 1
\]

\[
\chi = 0 \implies \lambda = 0
\]

\[
\cdot = k \implies \rho = k
\]

\[
\cdot = (k-1) \implies \tau = k
\]

\[
(0 = \ell = \frac{-A\lambda \rho}{C} - \frac{B\rho}{C} = k)
\]
Tutte polynomial (for connected graphs)

\[\chi = \chi + \chi \Rightarrow A=1, B=-1, C=-1 \]

\[\chi = y \Rightarrow \lambda = y \]

\[\chi = x \Rightarrow \tau = x \Rightarrow \rho = 1-x \]

\[0 = \lambda = \frac{-A\lambda^2}{C} - \frac{B\rho}{C} = (y-1)(1-x) \]
Temperly-Lieb

- Choose \(u, v \in \mathcal{C}, u, v \neq 0 \)

- Choose \(\# \) such that \(\# = u^\ast \cdot (u + v) \cdot u \)

- Choose \(\beta \in \mathcal{C}, \beta \neq 0 \) (vertex fugacity)

- Define graph invariant by these substitutions:

\[) \rightarrow)) \]

\[\begin{array}{c}
\begin{array}{c}
+ \\
- \\
\end{array}
\end{array} \rightarrow \beta \]

Special cases:

\[\bullet \rightarrow \beta \cdot \circ = \beta \cdot 1 \]

\[1 \rightarrow \beta \cdot \circ \]
Then

\[\beta, -\nu, -\beta \nu \rightarrow \beta, -\nu \beta^2, -\nu \beta^2 \]

\[\Rightarrow A = 1, \ B = -\nu, \ C = -\beta \nu \]

\[0 \rightarrow \beta \cdot 0 = \beta d \quad \Rightarrow \quad \beta = \beta d \]

\[\bigcirc \rightarrow d^2 \quad \Rightarrow \quad d = d^2 \]

\[\rightarrow \quad \Rightarrow \quad \lambda = d\nu + v \]

\[\text{(Check that } \lambda + \frac{A\lambda \rho}{C} + \frac{B\rho}{C} = 0) \]
Tutte polynomial via $T-L$:

$A = 1$
$B = -V = -1$
$C = -\beta d = -1$
$\lambda = du + V = y$
$\rho = \beta d = 1-x$

\Rightarrow

$d^2 = (y-1)(1-x)$
$\beta^2 = \frac{1-x}{y-1}$
$u^2 = \frac{y-1}{1-x}$
$V = 1$
Chromatic polynomial via T-L

\[A = 1 \]
\[B = -v = -1 \]
\[C = -\beta u = 1 \]
\[p = \beta d = \kappa \]
\[\lambda = d^2 = \kappa \]

\[d^2 = \kappa \]
\[\beta = d \]
\[u = -\frac{1}{d} \]
\[v = 1 \]

\[X_{d^2}(G) = \text{Yamada}(\hat{G}) \cdot d^{\#V(G)} \]

(recall:
\[\psi = 0 \]
\[\epsilon = \epsilon \])

(upto factors of $\beta = d$)
Hard Hexagons in the Shadow World

Want to evaluate "spin network":

\[(\text{assume } G \text{ is trivalent}) \]

\[\sum \left[(\prod \Theta) \cdot (\prod \Theta)^{-1} \cdot (\prod O) \right] \]

\[\sum \text{ restricted face labelings} \]

\[= \sum \left[\prod \Theta \cdot \prod \Theta^{-1} \cdot \prod O \right] \cdot \frac{1}{\sum O_i^2} \]

\[0 = \sum \delta_i^2 \]
If \(d = r = \frac{1 + \sqrt{5}}{2} \), then label set \(\{0, 2^3\} \).

\((0, 2, 0)\) is not an admissible triple, so...

\[\Rightarrow \text{summation is over "hard" polygons.} \]
For general d (but edge labels still all 2), label set $= \{0, 2, 4, 6, \ldots, 3\}$ and adjacent face labels differ by $-2, 0$ or 2.

\[\text{Some sort of height model}\]
State sums via handle decompositions

- Turaev-Viro state sum
- Witten-Reshetikhin-Turaev state sum
- Crane-Yetter state sum (4-dim)
- Dijkgraaf-Witten state sum (any dimension)
- Turaev "shadow" state sum

Goal: Derive all off the above in a unified framework.

More specifically, show that all of the above arise from computing the path integral of a semi-simple TQFT in terms of a handle decomposition.
Ingredients for a TQFT:

- **top dimension** $n+1$
- system of "fields" (e.g. pictures) for manifolds of dimension $\leq n$
- **local relations** (at least as strong as isotopy) for fields on n-manifolds
Now define

\[A(Y^n; c) = \mathbb{C}[\text{fields on } Y \text{ which restrict to } c \text{ on } \partial Y] / \langle \text{local relations} \rangle \]

(skein module)

Also define cylinder categories

\[A(X^{n-1}) = \left\{ \begin{array}{l}
\text{objects} = \{ \text{fields on } X^3 \} \\
\text{morphisms} \quad a \rightarrow b = A(X \times I; \tilde{a}, \tilde{b}) \\
\text{composition} = \text{gluing}
\end{array} \right. \]

\[A(\partial Y) \text{ acts on } \{ A(Y^n; c) \}_{c \in c} \text{ via gluing of collars} \]

\[\rightarrow \text{ gluing formula for } n\text{-manifolds} \]

(for \(n=2 \), "particles" are irreps of \(A(S^1) \).)
$(n+1)$-dimensional part

what we want:

- \(\mathcal{Z}(W_+^\infty); A(\partial W) \to C \)

- can define inner product

\[\langle \cdot , \cdot \rangle : A(Y_+) \times A(Y) \to C \]

\[\langle a, b \rangle \overset{\text{def}}{=} \mathcal{Z}(Y \times \Gamma) (\hat{a} \circ \hat{b}) \]

this I. is should be non-degenerate

- gluing formula:

\[
\mathcal{Z}(W_{g_\varepsilon}) (b_{g_\varepsilon}) = \sum_i \mathcal{Z}(W) (b \cdot \hat{e}_i \cdot v \cdot e_i) \cdot \frac{1}{\langle e_i , e_i \rangle} \\
(\{ e_i \} = \text{orthogonal basis of } A(W))
\]
Thm. Choose $z \in A(5^n)^*$. If

1. induced I.P. on $A(B^n; c)$ is positive definite $\forall c$, and
2. $\dim (A(4^n; c)) < \infty \quad \forall (4, c)$

then there is a unique partition function z such that $z(B^{n+1}) = z \in A(dB^{n+1})^*$.

Proof:

$z \mapsto$ I.P. on $A(B^n; c) \mapsto$ gluing formula for 1-handles

\mapsto I.P. on $A(B^{n-2} \times S^1; c) \mapsto$ gluing formula for 2-handles

\mapsto I.P. on $A(B^{n-2} \times S^2; c) \mapsto$ gluing formula for 3-handles

show independence under:

a) handle slides (easy)
b) handle cancellation (not hard)
Example:

\[n=2, \text{ fields = multi-curves, relations = d-isotopy} \]

(Temperly-Lieb)

- IP on \(B^2 \)

\[\langle \circ, \circ \rangle = \frac{q}{b} = \theta_{abc} \]

- gluing a 1-handle

\[\text{factor of } \frac{\theta_{abc}}{\theta_{ab} \cdot \theta_{bc}} = \theta^{-1} \]

- IP on \(S^1 \times I \)

\[\langle \circ, \circ \rangle = \delta_{ab} \]
- gluing a 2-handle

$Z(M_{2h})(x)$

$= \sum_{q} Z(M)(xuq) \cdot d_{q}$

$\text{I.f. on } S^2$

$\langle \Phi_{S^2}, \Phi_{S^2} \rangle = Z(S^2 \times I) = Z(B^3 \cup 2h) = \sum_{q} Z(B^3) (O^q) \cdot d_{q} = \Xi d_{q}^2$

- gluing a 3-handle

$\text{factor of } \frac{1}{\langle \Phi_{S^2}, \Phi_{S^2} \rangle} = \frac{1}{\Xi d_{q}^2}$
Putting it all together...

If \(m^3 \) has a generic handle decomposition (dual to a triangulation), then

\[
\mathcal{Z}(M) = \sum \left[\prod_{0-h} \bigotimes \prod_{2-h} \theta^{-1} \prod_{2h} O^\delta \prod_{3h} \left(\frac{1}{\epsilon d^2} \right) \right]
\]

labelings of 2-handles
<table>
<thead>
<tr>
<th>Fields</th>
<th>Local Relation</th>
<th>State Sum</th>
</tr>
</thead>
</table>
| Maps into BG (G a finite group)
$n = \text{arbitrary}$ | Homotopy of maps | Dijkgraaf-Witten sum on a triangulation |
| Pictures based on a disklike 2-category (e.g. a spherical category)
$n = 2$ | Isotopy plus relations coming from the category | Turaev-Viro sum |
| Pictures based on a ribbon category (a disklike 3-category)
$n=3$ | Isotopy plus relations coming from the category | For a generic cell handle decomposition of a 4-manifold, the Crane-Yetter state sum |
| [same as above] | [same as above] | For 2-handles attached to the 4-ball, the Witten-Reshetikhin-Turaev surgery formula |
| [same as above] | [same as above] | For a “special spine” of a 4-manifold, the Turaev shadow state sum |